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Abstract The intricate connection between the distribution ofexceptional points and the spectral 
behaviour of Hamiltonian systems is investigated. A method to determine the distribution 
of exceptional points for a Hamilton operator with systematic degeneracies is described. Its 
implementation is demonstrated considering the hydrogen atom in a stmng magnetic held. For 
this case, the distribution of exceptional points is a function of the scaled energy only. 

1. Introduction 

The subject of ‘quantum chaos’ has attracted much attention for more than a decade. Yet, 
a satisfactory definition is still outstanding and general investigations concentrate on the 
behaviour of system which have classically chaotic counterparts [1,2]. In the search for a 
suitable definition of ‘quantum chaos’ we investigate the properties of quantum mechanical 
(Hamilton) operators of the form Ho+IHl. The parameter A plays the role of a perturbation 
parameter, or it may serve to effect a phase transition or it may even under variation steer 
the system from an ordered into a chaotic regime [3]. 

We believe that the exceptional points of a matrix operator will shed light on this 
fascinating subject [4]. The exceptional points of the full operator are the points A for 
which two eigenvalues coalesce. We exclude genuine degeneracies, i.e. the coalescence of 
two eigenvalues occurs in the complex plane. The physical significance of the exceptional 
points is due to their relation with the avoided-level crossings for real I values. Globally, 
all the exceptional points determine the shape of the real spectrum [5,6]. A number of 
authors have studied level dynamics by focusing directly on the spectral properties when 
the parameter A is varied. The basic underlying structure of a complicated spectrum has 
been associated with a soliton 171 in a specific case. Distributions of avoided-level crossings 
and their gaps have been investigated [8] for matrix models and some real physical systems. 
Theoretical expressions have been given for random matrix models [9] and deviations from 
such expressions in real physical systems [lo]. In this paper, the focus is directed on the 
distribution of the exceptional points as they are the underlying mathematical cause for the 
properties studied by the authors quoted. 

The connection between the distribution of the exceptional points and the emergence 
of quantum chaos is seen as the fundamental mechanism that produces quantum chaos as 
far as operators of the form HO + AH1 are concerned. Here we use the term ‘quantum 
chaos’ by refemng to the statistical properties of quantum spectra of classically chaotic 
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systems. The positions of the exceptional points are fixed in the complex A plane and are 
determined solely by HO and H I .  For large matrices, it is, however, prohibitive to determine 
the positions exactly. Heiss and Kotz6 131 proposed a method to determine the distribution 
reasonably well from the knowledge of the two operators. Using this method they showed 
that a high density of exceptional points is a prerequisite for the occurrence of quantum 
chaos. 

Symmetries relating to HO and H I ,  or both, are usually expected to impose a particular 
structure on the full problem HO + AHl. This also holds when the symmetries relating to 
the individual operators are incompatible. It is the aim of this paper to study the effect 
of symmetries on the distribution of the exceptional points and to generalize the method 
discussed in [3]. From such an analysis we gain further insight into the effect of the 
exceptional points on the behaviour of a system. As a relevant application, the hydrogen 
atom in a strong uniform magnetic field is reinvestigated. The major aim of this paper 
is the demonstration that the exceptional points are relevant and that their distribution can 
be determined by a relatively inexpensive method. It is for this reason that a well studied 
problem has been chosen for comparison with quantitative results known from the literature. 

A A KotZe and W D Heiss 

2. Exceptional points and the curve spectrum 

Avoided-level crossings are always associated with exceptional points [I 1,121 if they occur 
for the levels &(A) of the Hamiltonian HO + A&. The exceptional points are square- 
root branch-point singularities in the complex A plane and they determine the fluctuation 
properties of the spectrum [5]. The distribution of exceptional points thus plays a crucial 
role in the spectral behaviour of the system. 

In order to obtain an approximation to the distribution of exceptional points, we utilize 
the observation that the spectrum of a chaotic system, pertaining to HO + AHl,  has an 
underlying simple structure. This structure is imposed on the system through the symmetries 
of HO and HI even when the symmetries are incompatible [13,14]. Below, we describe a 
procedure to obtain the approximate distribution of exceptional points of a system where 
HO or HI (or both) have systematic degeneracies. To this aim we introduce the idea of a 
curve spectrum. 

The curve spectrum is obtained by considering Hamiltonians of the form 

H = D ~ + A U .  D, .U-' (1) 

where 00 and D I  are the diagonal representations of HO and HI, respectively. The matrix 
U is an orthogonal makx and the problem is non-trivial for U # 1. This particular 
representation, where HO is diagonal, can always be chosen and is suitable for our purpose. 
We work in an irreducible representation of H to exclude genuine degeneracies for real 
A # 0. 

2.1. Non-degenerate systems: line spectra 

First consider a system without systematic degeneracies and let the eigenvalues of HO and 
HI be denoted by ck and U k ,  respectively. For large values of A we approximate the 
eigenvalues Ek(A) of H in equation (1) by a first-order perturbation expansion (A >> 1) i.e. 
[111 

.%(A) = ak + hUk + O(l/A). (2) 
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The first two terms of equation (2) yield lines with the appropriate association of slopes O J ~  

and intercepts q. Here, LYL are the diagonal elements of the ‘backwards’ rotated HO [3] i.e. 

(3) 

We term the set of lines in equation (2) the line spectrum. They are illustrated as broken 
lines in figure 1. The line spectrum is an approximation of the actual spectrum. 

ak = (U-’ ‘ ffo ’ U)n,x. 

h 
Figure 1. Schematic illustration of %e asymptotic curve s p e c ”  for a system that has 
Systematic degeneracies. Here E; = fj + ,Uj  (full lines), EL = ux + Awk (broken lines) 
and the dotted culyes represent the joining algebraic equations. 

The significance of the line spectrum lies in the fact that the two quantities L Y ~  and OX 

are calculated from knowledge of HO and HI alone. The line spectrum and the associated 
N ( N  - 1)/2 intersection points are easily calculated. The exceptional points of the full 
problem are expected to lie near the intersection points of the line spectrum (for the 
two-dimensional case the real parts of the exceptional points coincide with the points of 
intersection [].I]). From numerical investigations at low dimensions (N 6 60), where the 
actual positions of exceptional points can be determined, we conclude that the distribution 
of intersection points is statistically equivalent to the distribution of the real parts of the 
exceptional points [3]. The line spectrum is thus a useful tool for obtaining the statistical 
properties of the spectrum of the complete system. 

2.2. Degenerate systems: curve spectra 

If either HO or HI is degenerate, the number of exceptional points is less than N ( N  - 1)/2 
depending on the degree of degeneracy. However, the procedure described in the previous 
section generically yields N ( N  - 1)/2 intersection points. This discrepancy affects the 
distribution of intersection points and hence the anticipated distribution of exceptional points. 
In the following we describe how the degeneracy of HO or HI is taken into account. 

Suppose that HO has systematic degeneracies. We divide the space into p subspaces 
where each subspace has dimension M,; y = 1,2, .  . . , p .  Each subspace is &-fold 
degenerate with eigenvalues cp. For small values of A, a first-order perturbation expansion 
yields eigenvalues of the form + A& where 8, are the eigenvalues of HI in the yth 
subspace. This appears as one group of levels originating at elr with slopes 8l in figure 1. 
The asymptotic (A < 1) line spectrum for the whole system is therefore 

E; = cj + ASj j = 1,2,. . . , M (4) 
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where M is the dimension of the complete system. Note that the line spectrum is again 
obtainable from quantities easily available from HO and HI alone. 

For an Ho with degeneracies, equation (2)  still holds when h >> 1 and equations (4) 
and (2)  are approximation: of the actual spectrum at the respective asymptotic values of A. 
The total approximate spectrum is obtained by joining equations (2)  and (4)  by a simple 
algebraic equation that only depends on the four quantities EW, &, a y  and OX. The form of 
this equation is determined by the specific form of the spec!” and is represented by the 
dotted curves in figure 1. We term this the curve spectrum of the system and it signifies the 
underlying simple structure referred to above. To obtain the curve spectrum, care has to be 
taken to associate the appropriate EI in equation (2) with the appropriate EL in equation (4). 
In the following section it is demonstrated how this is achieved in a particular case. For 
illustration we use as an example the hydrogen atom in a strong magnetic field as it is 
usually considered as the chaotic system pur excellence [15-171 and also because of its 
experimental significance [ 181. 

A A KotzC and W D Heiss 

3. The hydrogen atom in a strong magnetic field 

3.1. Themodel 

The Hamiltonian of this system (using~ atomic units) is 

P 2 1 Y  Y 2 2 . *  H = - - - + - l z + - r  sin B.  
2 r 2  8 (5) 

Here y is a dimensionless parameter giving the field strength and 1, is the z-component 
of the angular momenttun 1151. The azimuthal quantum number m and parity n are good 
quantum numbers. For the remainder of this paper we will only consider the subspace of 
positive parity with m = 0. The Hamiltonian in equation (5) is now of the form 

H =  H ~ + A H I  (6) 

with (scaled by a factor 2)  

1 2 . 2  2 H ,  = - r  sin e A =  y , 
2 2  

4 
H o = p  - -  

r 

Wintgen and Friedrich [19] showed that, similar to the classical system, the behaviour of 
the quantum system depends only on a scaied energy E where 

and where E is the energy and n the principal quantum number [ZO]. 

3.2. Matrix representation 

In order to discuss the distribution of exceptional points, we use a matrix representation of 
H with Ho diagonal, i.e. we use the Coulomb basis set [XI. To obtain numerically reliable 
results, Sturmian functions are used [22].  The subsequent diagonalization of HO is done 
numerically together with the associated rotation of H, , 
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Wunner et a1 [23] proposed the following orthonormal and complete set of Sturmian 
functions as the radial eigenfunctions 

with Lr:!, denoting the generalized Laguerre polynomials, J' is a positive real parameter 
and n = 1,2,. . . , nmax is the principal quantum number where nmax is the maximum n 
considered in the truncated matrix space. Using equation (8) (and Schrodinger's radial 
integrals [251) yields a matrix representation for H in (6) [4,26] which is the most 
efficient approach close to the ionization threshold [I711 The explicit formulae are listed in 
appendix A. 

The advantage of this basis lies in the freedom of choice for the parameter J', which 
serves to control convergence and accuracy. We choose 5 = 2/n* (n' = I ,  2,3, . . . , n)  for 
accurate eigenvalues in the vicinity of n* [24]. Valuable computing time is thus saved when 
extremely accurate eigenvalues have to be computed. The range of accurate eigenvalues can 
be extended by choosing n- to be considerably larger than n*, but, with a corresponding 
increase in computing time and memory usage. 

For calculating the eigenvalues, curve spectrum and determining the density of 
exceptional points the following scheme is appropriate for (A, I )  

(LO), (2,O). (3, O), (3,2), (4,O). (4, I), (5,0), (5.2), (5,4), . . . , (aman. nmM - 1). (9) 

This order leads to a full matrix HO while HI has a block structure. The order used for 
(n. 1 )  in equation (9) is a reshuffling of the order generally used in the literature. This has 
been appropriately taken into account when truncating the matrices. We have tested our 
procedure against the procedures described in the literature by comparing the eigenvalues so 
obtained with those by Friedrich and Wintgen [15], Delande and Gay [27], Killingbeck [28] 
and Clark and Taylor [24]. The eigenvalues were found to be accurate under due variation 
of the parameter J'. 

A part of the spectrum is drawn in figure 2 for n = 34,35, . . . ,42 with energy measured 
in Rydbergs. Here nmax = 50 and J' = 2 /40 resulting in a 650 x 650 matrix which can easily 
be evaluated and diagonalized on a minisuper computer. The strength parameter A is taken 
between 0 and lo-' which corresponds to a field strength of between 0 and 7.43 Tesla. At 
A = 0 the degeneracies of the pure hydrogen atom are genuine; for A > 0 the lines do not 
cross but undergo avoided-level crossings. 

3.3. Curve spectrum for hydrogen 

By scanning the spectrum in figure 2, the underlying simple structure becomes obvious if all 
the avoided-level crossings are taken as real crossings. We recall that at A = 0 the crossings 
are actual degeneracies of Ho; all other crossings are level repulsions which look like actual 
crossings due to the resolution used. The simple and structured form of the spectrum is 
expected since the symmehies relating to Ho and HI  impose a particular structure on the full 
problem HO + AH]. In other words, while the detailed structure of the spectrum looks rather 
complex, an underlying simple structure is discernible. This simple structure is simulated 
through the curve spectrum obtained explicitly below. 

Having transformed to a representation with HO diagonal we use the guidelines given in 
section 2.2. Each principal quantum number n is degenerate in the angular momentm 
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do' 

Figure 2. The spectrum for the hydrogen atom in a uniform magnetic field. The pa~3 shown is 
with strength parameter A between 0 and the principal quantum number n = 34.35. . . . ,42 
(from bonom to top) and the energy is measured in Rydbeqs. 

quantum number 1. The subspaces are characterised by n and we denote them as n- 
subspaces. To obtain explicitly the curve spectrum, we find the appropriate connection 
of E t  and EL (equations (2) and (4), respectively) by noting the following. First, the 
individual lines in each n-subspace do not intersect one another. Second, the order of the 
lines for increasing values of A is given by the fact that the top-most line of the n-subspace 
crosses all the lines of the (n + 1)-subspace except the topmost one; the second top line 
crosses all the lines of the (n + 1)-subspace except the second top and top-most lines etc. 
the first line of the n-subspace does not cross any lines of the (n + I)-subspace. 

A simple curve which connects Ek and E; is given by the heuristic algebraic equation 

(10) &(A) = Uk + isk - [lak - 4 3 / 2  + ~ 3 9 6 ~  - 0k13/*32/3. 

The value of the power 2/3 is found to fit sufficiently well. The form of equation (IO) 
ensures that it reduces to equations (2) and (4) when A + 00 and A -+ 0 respectively. 
By construction, the curve spectrum coincides with the spectrum of the truncated matrix 
Ho C AH,  only asymptotically for b << 1 and A >> 1. In particular, for b >> 1 it shares 
all deficiencies of a spectrum obtained numerically by truncation. In the region of interest, 
which is the middle region, the curve spectrum does not reproduce the details of the spectrum 
obtained by diagonalization for each value of b. However, it does reproduce the distribution 
of the real parts of the exceptional points to the point of quantitative agreement with known 
results as demonstrated below. We recall that this result is obtained from quantities that can 
be derived from Ho and HI alone. 
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In order for equation (IO) to give the appropriate curve spectrum all the lines should 
have negative curvature. This can only hold if the following inequalities 

ffk > 6k 8 k  > Uk (11) 

are obeyed. Because (Yk and E X  are obtained by rotations of the same matrix DO, they 
obey the same trace rules and (11) cannot hold globally. However, we found that ( I  1) is 
always satisfied in the vicinity of n* as long as nmax > 2n*, i.e. for the middle range of the 
spectrum. Figure 3 shows the line spectrum for the same window of the actual spectrum 
drawn in figure 2. The similarity between the actual and curve spectrum is striking. Here 
nmax = 90 and n* = 40 which leads to a matrix of order 2070 x 2070 to be  diagonalized. 
This procedure is very efficient because the diagonalization has to be done only once to 
obtain the four quantities a, E ,  o and S for a specific n’. 

XIV’ 

Figure 3. Curve spectrum for the hydrogen aiom i n n  magnetic field. For the sake of comparison 
the same E and A values as those depicted in figure 2 are shown. 

The curve spectrum is now used to obtain the density of exceptional points from the 
intersection points. All calculations are done for constant scaled energy E .  The actual 
intersections of the curves are easily calculated using a standard Newton-Raphson numerical 
procedure. 

3.4. Densiry of exceptional points 

A suitable representation of the distribution of intersection points is obtained by keeping 
n’ fixed. The distribution is then calculated by choosing a ‘window’ between two scaled 
energies E ,  and E* where the top and bottom energies are defined by setting i: n’ +Z. 
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Figure 4. Schematic representation of the 'windows' (broken rectangles) used to calculate the 
disvibulion of intersection points. The full curves are the invariant lines with values of the 
scaled energy F indicated. 

The left and right A's are obtained by setting A I  = [ - E I ( ~ * ) ~ ] - ~  and hz = [-~~(n*)~]-~. 
Here we have A ]  < A2 and EI < E ! .  This is schematically shown as one 'window' (broken 
rectangle) in figure 4. 

The distribution of intersection points P in a 'window' of length EZ - 61 is then 
calculated. The area under the histogram, so obtained, is normalized to unity so that P 
can be related for different n*-values, thus allowing different 'windows' to be compared. 
To render a direct comparison between the quantal and classical results, we took many 
overlapping 'windows' (n' = IS. 16, 17,. . . ,45) and calculated the distribution in each 
(see figure 4). The total distribution of intersections P = P(n*, EZ - E ] )  is represented in a 
contour graph in figure 5 with &I = -0.5 and EZ = -0.2. The lines shown are constant P 
lines, each with a different vaIue for P. The global decreasing nature of P with increasing 
scaled energy is evident. 

From figure 5 we make two observations: first, for fixed n*, the normalized density of 
intersections P decreases with increasing E and second, statistically, the normalized density 
of exceptional points does not depend on n' (and thus the energy E )  or A but only on the 
scaled energy E .  

The first observation confirms the fact, which is evident from the spectrum in figure 2, 
that the density of states decreases if n* is fixed and E increased. This is expected since 
there is a relation between the densiry of states and the density of intersections given by P. 
The distribution P does not relate to the fact that the density of states increases if E is kept 
fixed, and n* is increased, because of the normalization procedure used. The actual density 
of intersections, i.e. the absolute count of the number of intersections without normalization 
P'(n*) for E fixed, is plotted in figure 6 for E = -0.2. This clearly shows that the larger 
the value of n* is, the higher the density of intersection points. Since we deal with a 
particular situation and are unaware of a quantitative relationship between P' and n*, we 
use a least-square fit and find 

P:(n*) =an* + b(n*)'+ &I*)'. (12) 

Note that the leading term is cubic in n'. As can be seen from table 1, equation (12) holds 
for all relevant values of  E. 

Of great significance is the second observation which is consistent with results from a 
classical and quantum mechanical analysis in that the only relevant parameter is the scaled 
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Figure 5. A geographical map (contour graph) showing that the density 01 intersection points 
only depends on the scaled energy E.  The full lines are lines of mmtmt density of crossing 
points P with the higher values on the leii side of the graph. The declining nature of P which 
is constant in principal quantum number n* is evident. 

Table 1. Leat-square fits to the actual density of inleisections P:(n-) for Several values of [he 
scaled energy E .  

Plo,2 = -0.66387"' + 0.C4843(n*)2 + 0.0016(n')3 
= 1.62276n- - 0.08895(n')2 t 0.00232(n')' 
= -0.58714n' + 0.03823(n')2 + O.O0065(n')' 

Plo,s = -0,50964n. + 0.02749(n*)2 C 0.00089(n')' 
= 0.0861211' - 0.01368(n')2 + 0.00137(n*)' 
= 0.8909711' - 0.04718(n')2 + 0.00502(n')' 

energy E [ 151. It holds, in particular, for the normalized density of intersection points. 
This is a non-trivial result in the context of the present paper, While a corresponding 
observation has been made by other authors [8. IO], we obtained it from the density of 
the exceptional points and not by diagonalizing Ho + AH1 for a large range of A-values. 
The curve spectrum is an auxiliary device to determine from the intersection points the 
geometrical distribution of the real parts of the exceptional points. The result obtained 
confirms the fact that the mathematical mechanism which determines the properties of the 
spectrum of the Hamiltonian Ho f A H ,  must be sought in the exceptional points. On a 
technical point, we stress that the result has been obtained without determining explicitly 
the positions of the exceptional points which is in fact prohibitive in view of their huge 
number (about half a million for the matrix size considered). 
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Figure 6. Actual density of crossings P' as a function of principal quantum number a* shown 
for scaled energy E = -0.2. The full curve is a least-square fit given by P: (see table I ) .  

4. The  role of the imaginary parts of the exceptional points 

From the findings above we conclude that the density of exceptional points is higher for 
E ,  = -0.5 than for 8 2  = -0.2. Yet we know that the system behaves more chaotically for 
larger E .  Chaos sets in at E X -0.35 and the system is fully chaotic for E = -0.1 [20]. This 
is only an apparent contradiction to the conjecture [3], that a higher density of exceptional 
points makes chaos more likely to occur. In fact, if the bulk of the exceptional points is 
situated close to the real axis, the corresponding level repulsions are only weakly pronounced 
which yields a Poisson rather than a Wigner distribution for the nearest-neighbour spacing 
distribution [ I l l .  In physical terms, this situation corresponds to very weak mixing which 
is due to small coupling matrix elements. It is known that it is the density of states and the 
coupling matrix elements [291 that influence the fluctuations of the spectrum; if the mean 
distance of the levels is of the same order of magnitude as the coupling matrix elements, 
conditions are most favourable for fluctuations associated with quantum chaos. The density 
of intersections of the unperturbed curves is related to the density of states while the coupling 
matrix elements determine, in particular, the imaginary part of the exceptional points which 
in turn determine the fluctuation properties of the spectrum. This latter information is not 
contained in the intersection points since it is the coupling which moves the exceptional 
points into the complex plane. Roughly speaking, the quotient of the imaginary and real 
part of the exceptional point is proportional to the coupling matrix element. The energy 
gap between repelling levels is also proportional to the same quantities. 

The leading term of PL(n*) is cubic in n*. It turns out that the average growth of the 
coupling matrix is also proportional to [n*13. When moving on a line of constant scaled 
.energy E ,  the coupling parameter A decreases proportionally to (n')-$. Hence the product 
P:(n*) x A x HI"'"'' is essentially constant when moving on an invariant line. We have 
here the interesting situation that the increasing density of levels (exceptional points) is 
balanced by the corresponding inverse behaviour of AH1 . 
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5. Summary and discussion 

The hydrogen atom in a strong uniform magnetic field has been re-examined by investigating 
the distribution of exceptional points. The curve spectrum which exhibits the underlying 
simple structure of the actual spectrum can be obtained from the two operators HO and H I  
alone. The distribution of intersection points of the curve spectrum reflects the distribution 
of the real parts of the exceptional points. Regions of high  density of these distributions 
are a prerequisite to the exhibition of chaotic behaviour. If the coupling between the levels 
is sufficiently strong, the onset of chaotic behaviour is expected precisely in that region. 

The study of hydrogen in a strong magnetic field is used as a test case for the universally 
valid fact that all properties of the spectrum of an operator of the form HO + AH1 must 
reside in the exceptional points. While this is obvious from a mathematical point of view, 
we have demonstrated that it can be used in practical terms in a non-trivial situation. We 
have established that the results of our analysis are in line with known results in that the 
relevant distributions depend only on the scaled energy E .  

At this point one might speculate about further developments. The symmetries of either 
Ho or HI (or both) impose stmcture onto the spectrum. In the spectrum of the hydrogen 
atom in a magnetic field there are, in addition, scaling laws. The latter structure has been 
re-established in this paper. The former structure is expected to relate the distribution of 
exceptional points to the classical periodic orbits. Work on simple matrix models reveals 
that such a relation exists [13,14]. It is hoped that with further progress along these lines 
we will be able to explain the semiclassical results by the detailed structure of the positions 
of the exceptional points. 

Appendix A. Matrix representations of HO and Hi 

Using the Sturmian function basis given in (8) and the radial integral due to Schradinger 
1’251 leads to a matrix representation of HO given by 

x [ (n  - f - l ) ( n  - I - r)(n’ - I  - r )  + (n - 2 /<) (21+  r + I )  
- ( n + l + l ) ( n - I - l  - r ) (n‘ - I - r )]&,~ .  

c Here means that r runs to the smaller of the two numbers. The matrix 
.representation of HO is diagonal in 1 but not in n. Using (S), the matrix elements for 
HI can also be expressed in closed analytical form. The matrix is banded according to the 
selection rules In - n’] < 2 and Il - l‘[ = 0,2. Using Schrodinger’s radial integral, the 
radial matrix elements H, = (l’, n‘[r21n, I )  are found [4]. When l’ = 1 

n’ = n - 2 : H, = <-’J(n - I - 2)(n - 1 - l ) (n  + l ) (n  + 1 + 1) 

n’ = n - I : H, = -4nt-’J(n - I - l ) (n  + l  + 1) 

n‘ = n : H, = 2<-2[3n(n + 1) - l(1+2)] 

n’ = n + 1 : H, = -4(n + 1)C-’J(n - I)(n + 1 + 2) 
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and for I’ = 1 + 2 

and for 1’ = 1 - 2 

n‘ = n + 2 : H, = <-’,/(n - I)(n - I + 1)(n - I  +2)(n - 1 + 3). 
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